Developing A Physiologically Based Pharmacokinetic Model for Quantitative Characterization of Exogenously Administered T Cells

Antari Khot PhD candidate, SUNY at Buffalo ASCPT 2019, Washington DC March 16, 2019

Interest in T cell based therapies

Adoptive cancer therapy

- TILs extracted from patients and activated ex-vivo with high IL-2
- Engineered T cells such as TCR T cells and CAR T cells

T cell redirecting/modulating therapies

- Immune check point inhibitors and bispecific antibodies
- SCID mice + xenograft tumors + huPBMCs
 WT mice + murine tumors + muTCR/CAR T cells or endo immune cells + IO therapy

Previous studies

ID	Authors (year)	Label used	State of T cells	Significant tissues
1	Wallace et al. 1993	[I125]-PKH95	Active T cells purified from tumor (antigen specific)	Lung (tumor metastases), spleen (in 20 hrs)
2	Albright et al. 1997	[I125]I2P-Di-6-ASP	Inactive, purified from spleen	Spleen, liver
3	Melder et al. 2002	In111 oxine	Tumor antigen specific activated T cells	Liver, spleen
4	Xu et al. 2013	CFSE dye	Tumor antigen specific activated T cells	Tumor, liver
Dercent of injectate/dm tssue Percent of injectate/dm tssue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 10 10 10 10 10 10 10 10 10 1	A 0.25 0.20 0.15 0.10 0.05 0.00 Hours after Cells Injected Wallace	3 100 100 100 100 100 100 100 10	4 100 90 80 70 60 70 60 10 10 10 10 10 10 10 10 10 1

Albright, J. W., R. C. Mease, C. Lambert and J. F. Albright (1998). Mech Ageing Dev 101(3): 197-211

Use of chromium for labeling T cells Method established 50 years ago...tried to see further by standing on the shoulders of giants

Chromium binds to intracellular peptides irreversibly. Chromium eluted from dead cells is not reutilized and is cleared out very fast. Half life of Cr51 – 27.7 days

Lymphocytes showed higher labeling efficiency compared to erythrocytes

Optimized labeling conditions

Eyre HJ, Rosen PJ, Perry S (1970) Relative labeling of leukocytes, erythrocytes and platelets in human blood by 51-chromium. Blood 36 (2):250-253 McMillan R, Scott JL (1968) Leukocyte labeling with 51-Chromium. I. Technic and results in normal subjects. Blood 32 (5):738-754

Observed T cell PK and Biodistribution

AUC: area under the curve, %ID/g*hr ; BC: biodistribution coefficient, AUCtissue/AUCplasma

A axis: Lime' hone.

Observed T cell PK and Biodistribution

AUC: area under the curve, %ID/g*hr ; BC: biodistribution coefficient, AUCtissue/AUCplasma

X axis: Time, hours

→ Blood flow Lymph flow → Elimination → Transmigration

Model processes:

Major tissues connected in anatomical manner

PBPK model

- Cells are distributed via blood flow
- T cells migrate into extravascular compartment of the tissue
- Recycling of T cells from extravascular compartment via lymph flow
- Lymphatic fluids drain into lymph nodes, which empties into whole blood compartment

Model assumptions:

- Elimination only through lung compartment
- All cells recycle from extravascular compartment
- Retention factor estimated for liver, spleen and kidney compartment to account for steady accumulation

	nes and par	unice	or obtilitation
Parameter	Description (unit)	Estimate	CV%
J _{lung}		1843.0	15.4
J _{heart}		34.9	17.2
J _{kidnev}		87.3	37.9
J _{brain}		1.4	21.2
J _{muscle}		0.5	19.7
J _{bone}		82.6	16.7
J _{tumor}	Transmigration rate for	0.6	18.6
J _{skin}		0.6	18.7
J _{fat}	each tissue (1/hr)	1.6	18.5
J _{SI}		12.9	17.1
J		5.2	18.1
J _{spleen}		114.0	33.8
J _{liver}		126.9	18.9
Jpancreas		10.0	20.0
J _{other}		86.8	17.7
R _{kidnev}		3.9	37.9
R _{spleen}	Retention factor	9.8	34.8
R _{liver}		2.5	18.4
Elung	Elimination rate (1/hr)	0.84	Fixed (Zhu et al., 1996)
Q _{tumor}	Tumor blood flow (ml/hr)	6	Fixed (Zhu et al., 1996)
V _{tumor}	Tumor volume (ml or g)	0.45	Fixed (radius~3.85mm)

Model fits and parameter estimates

Zhu H, Melder RJ, Baxter LT, and Jain RK (1996) Cancer Res 56:3771-3781.

Comparison with literature reports

Future directions

- Foundation PBPK model -> predictive model by plugging experimental transmigration rates
- Use this method to investigate PK of specific cell types
- Expand this model to incorporate T cell antigen recognition and clonal proliferation
- Integrate this model with Ab PBPK model to describe the PK of T cell retargeting bispecific antibodies and predict in vivo synapse concentrations – NSG mouse model with huPBMC

Acknowledgements

- PhD Advisor: Dhaval K. Shah
- Collaborators: Richard Koya and Satoko
 Matsueda (Roswell Park Cancer Institute)
- Center for Protein Therapeutics (AbbVie, Eli Lilly & Company, Genentech, Amgen, Janssen, Sanofi, UCB)
- Department of Pharmaceutics, SPPS, SUNY at Buffalo
- ASCPT 2019 scientific committee
- Pfizer Inc.

Observed T cell PK and Biodistribution

AUC: area under the curve, %ID/g*hr; BC: biodistribution coefficient, AUCtissue/AUCplasma

 \succ

Comparison with literature reports

Study ID	Wallace et al. (1993)		Melder et al. (2002)		Khot et al. (2019)	
Labeling method	I-125 PKH95 labeled T cells		In-111 oxine labeled T cells		Cr-51 labeled T cells	
Preparation of T cells	*Ag not recognized Splenocytes exposed to 6000 IU/ml IL-2	**Ag recognized TILs extracted from MC38 SC tumors	*Ag not recognized Lymphocytes extracted from spleen	Mice sensitized with splenocytes of MCaIV tumor-bearing C3H mice and lymphocytes extracted from spleen	Splenocytes expanded using anti-CD3, anti-CD28 and IL-2	TILs extracted from B16-BL6 SC tumors
	Spleen	Lung	Spleen	Lung	Spleen	Lung
Tissues listed in descending	Lung	Spleen	Liver	Spleen	Liver	Spleen
order of concentrations at 20-	Liver	Liver	Lung	Liver	Lung	Liver
24 hours	Skin	Skin	Tumor	Tumor	Kidney	Kidney
	Muscle	Muscle	Heart	Heart	TDLN	Tumor